Kaggle sushida

背景
投稿者投稿者かまろ/Camaroいいね21お気に入り登録
プレイ回数2999難易度(3.9) 60秒 英語 英字
Sushida for Kagglers
Sushida for Kagglers
順位 名前 スコア 称号 打鍵/秒 正誤率 時間(秒) 打鍵数 ミス 問題 日付
1 kurimats 3833 Master 3.9 97.1% 60.0 237 7 8 2024/10/07
2 しまむ 900 Novice 1.0 85.5% 60.0 65 11 2 2024/10/16

関連タイピング

問題文

ふりがな非表示 ふりがな表示

(import pandas as pd)

import pandas as pd

(import numpy as np)

import numpy as np

(import pdb; pdb.set_trace())

import pdb; pdb.set_trace()

(sub.to_csv('submission.csv', index=False))

sub.to_csv('submission.csv', index=False)

(pd.DataFrame())

pd.DataFrame()

(seed_everything(42))

seed_everything(42)

(torch.cuda.is_available())

torch.cuda.is_available()

(class MyDataset(Dataset):)

class MyDataset(Dataset):

(%matplotlib inline)

%matplotlib inline

(from sklearn.model_selection import StratifiedKFold)

from sklearn.model_selection import StratifiedKFold

(fig, axes = plt.subplots(2, 2))

fig, axes = plt.subplots(2, 2)

(import xgboost as xgb)

import xgboost as xgb

(from lightgbm import LGBMClassifier)

from lightgbm import LGBMClassifier

(for _, test_index in kf.split(x, y):)

for _, test_index in kf.split(x, y):

(train.head())

train.head()

(model = timm.create_model("resnet50"))

model = timm.create_model("resnet50")

(torch.cuda.empty_cache())

torch.cuda.empty_cache()

(img = cv2.imread(image_path))

img = cv2.imread(image_path)

(img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

(from transformers import BertModel)

from transformers import BertModel

など

(import albumentations as A)

import albumentations as A

(os.environ["CUDA_VISIBLE_DEVICES"] = "")

os.environ["CUDA_VISIBLE_DEVICES"] = ""

(for i, j in enumerate(tqdm(range(100))):)

for i, j in enumerate(tqdm(range(100))):

(plt.rcParams['figure.figsize'] = 30, 30)

plt.rcParams['figure.figsize'] = 30, 30

(df['target'].value_counts())

df['target'].value_counts()

(for i, row in tqdm(df.iterrows(), total=len(df)):)

for i, row in tqdm(df.iterrows(), total=len(df)):

(!nvidia-smi)

!nvidia-smi

(import tensorflow as tf)

import tensorflow as tf

(model.compile(optimizer='adam'))

model.compile(optimizer='adam')

(gc.collect())

gc.collect()

(from sklearn.metrics import roc_auc_score)

from sklearn.metrics import roc_auc_score

(kaggle competitions download -c titanic)

kaggle competitions download -c titanic

(os.makedirs(save_dir, exist_ok=True))

os.makedirs(save_dir, exist_ok=True)

(df.reset_index(drop=True))

df.reset_index(drop=True)

(df = pd.read_csv(file_name))

df = pd.read_csv(file_name)

(vectorizer = TfidfVectorizer())

vectorizer = TfidfVectorizer()

(warnings.filterwarnings('ignore'))

warnings.filterwarnings('ignore')

(plt.figure(figsize=(14,6)))

plt.figure(figsize=(14,6))

(from sklearn.ensemble import RandomForestRegressor)

from sklearn.ensemble import RandomForestRegressor

(model.fit(train_X, train_y))

model.fit(train_X, train_y)

(print(1, 2, 3, sep=' < '))

print(1, 2, 3, sep=' < ')

(np.random.randint(low=1, high=6, size=10))

np.random.randint(low=1, high=6, size=10)

(np.zeros_like(img, dtype=np.float32))

np.zeros_like(img, dtype=np.float32)

(from xgboost import XGBClassifier)

from xgboost import XGBClassifier

(df.iloc[100:200])

df.iloc[100:200]

(print("{}: {}".format(key, value)))

print("{}: {}".format(key, value))

(docker run --rm -it kaggle/python-build /bin/bash)

docker run --rm -it kaggle/python-build /bin/bash

(docker-compose up)

docker-compose up

(git push origin master)

git push origin master

(s = pd.Series([1, 3, 5, np.nan, 6, 8]))

s = pd.Series([1, 3, 5, np.nan, 6, 8])

(df.sort_index(axis=1, ascending=False))

df.sort_index(axis=1, ascending=False)

(df.iloc[[1, 2, 4], [0, 2]])

df.iloc[[1, 2, 4], [0, 2]]

(df[df["A"] > 0])

df[df["A"] > 0]

(df.dropna(how="any"))

df.dropna(how="any")

(df.fillna(value=5))

df.fillna(value=5)

(df.apply(np.cumsum))

df.apply(np.cumsum)

(df.groupby("target").sum())

df.groupby("target").sum()

(np.arange(15).reshape(3, 5))

np.arange(15).reshape(3, 5)

(np.array([1, 2, 3, 4]))

np.array([1, 2, 3, 4])

(np.transpose(x, (1, 0, 2)).shape)

np.transpose(x, (1, 0, 2)).shape

(nn.Linear(512, 512))

nn.Linear(512, 512)

(nn.CrossEntropyLoss())

nn.CrossEntropyLoss()

(torch.optim.SGD(model.parameters(), lr=1e-3))

torch.optim.SGD(model.parameters(), lr=1e-3)

(optimizer.zero_grad())

optimizer.zero_grad()

(loss.backward())

loss.backward()

(optimizer.step())

optimizer.step()

(model.eval())

model.eval()

(torch.save(model.state_dict(), "model.pth"))

torch.save(model.state_dict(), "model.pth")

(with torch.no_grad():)

with torch.no_grad():

(nn.Parameter(torch.zeros(10)))

nn.Parameter(torch.zeros(10))

(nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1))

nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)

(lambda x: x.view(x.size(0), -1))

lambda x: x.view(x.size(0), -1)

(x = np.linspace(-math.pi, math.pi, 2000))

x = np.linspace(-math.pi, math.pi, 2000)

(y = np.sin(x))

y = np.sin(x)

(torch.nn.MSELoss(reduction='sum'))

torch.nn.MSELoss(reduction='sum')

(boxes.append([xmin, ymin, xmax, ymax]))

boxes.append([xmin, ymin, xmax, ymax])

(img, target = self.transforms(img, target))

img, target = self.transforms(img, target)

(if __name__ == "__main__":)

if __name__ == "__main__":

(import os)

import os

(import collections)

import collections

(import json)

import json

(import numpy as np)

import numpy as np

(import tensorflow as tf)

import tensorflow as tf

(from tensorflow import keras)

from tensorflow import keras

(from tensorflow.keras import layers)

from tensorflow.keras import layers

(import tensorflow_hub as hub)

import tensorflow_hub as hub

(import tensorflow_text as text)

import tensorflow_text as text

(import tensorflow_addons as tfa)

import tensorflow_addons as tfa

(import matplotlib.pyplot as plt)

import matplotlib.pyplot as plt

(import matplotlib.image as mpimg)

import matplotlib.image as mpimg

(from tqdm import tqdm)

from tqdm import tqdm

(metric = "sparse_categorical_accuracy")

metric = "sparse_categorical_accuracy"

(plt.figure())

plt.figure()

(plt.plot(history.history[metric]))

plt.plot(history.history[metric])

(plt.plot(history.history["val_" + metric]))

plt.plot(history.history["val_" + metric])

(plt.title("model " + metric))

plt.title("model " + metric)

(plt.ylabel(metric, fontsize="large"))

plt.ylabel(metric, fontsize="large")

(plt.xlabel("epoch", fontsize="large"))

plt.xlabel("epoch", fontsize="large")

(plt.legend(["train", "val"], loc="best"))

plt.legend(["train", "val"], loc="best")

(plt.show())

plt.show()

問題文を全て表示 一部のみ表示 誤字・脱字等の報告