中学生でもわかる微分
オリジナルの文であり、難しい内容については説明していないので、間違いや説明の足りない部分があるかもしれませんが、ご了承ください。
| 順位 | 名前 | スコア | 称号 | 打鍵/秒 | 正誤率 | 時間(秒) | 打鍵数 | ミス | 問題 | 日付 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | デデデさいきょう | 6343 | 大天才科学者 | 6.8 | 93.0% | 251.9 | 1728 | 130 | 34 | 2025/11/03 |
| 2 | fu-cyobi | 4609 | ノーベル賞受賞者 | 4.8 | 95.0% | 355.6 | 1730 | 91 | 34 | 2025/11/04 |
関連タイピング
-
よく使われる四文字熟語をピックアップしてみました
プレイ回数20万かな60秒 -
夏は虫たちの季節ですね!というわけで昆虫打!!
プレイ回数6.8万短文かな60秒 -
何秒で全部打てるか挑戦してみよう!
プレイ回数434万短文かな298打 -
Mrs.GREEN APPLEの青と夏です!
プレイ回数15万歌詞1030打 -
テトリスサビ!!!!!!!!!!!!!!!!!!
プレイ回数13万歌詞かな167打 -
コレ最後まで打てたらすごいと思う。
プレイ回数1521歌詞1532打 -
プレイ回数2.4万短文かな60秒
-
5分間の速度部門の模擬試験です。打つ速度で級が決まります
プレイ回数93万長文300秒
問題文
(びぶんはこうこうすうがくでならうもので、つまづきやすいぶんやのひとつでもあります。)
微分は高校数学で習うもので、つまづきやすい分野の一つでもあります。
(そのりゆうは、なにをしているのかよくわからないからです。)
その理由は、何をしているのかよくわからないからです。
(けいさんはできるけど、そのけっかなにができるのかがわからないと、)
計算はできるけど、その結果何ができるのかがわからないと、
(なんのためにけいさんしているのかわからず、よりむずかしいないようにはいったとき、)
何のために計算しているのかわからず、より難しい内容に入った時、
(かならずどこかでつまづいてしまいます。)
必ずどこかでつまづいてしまいます。
(ですので、びぶんとはなにか、しっかりとはあくしておくことがたいせつです。)
ですので、微分とはなにか、しっかりと把握しておくことが大切です。
(さてほんだいにはいりましょう。)
さて本題に入りましょう。
(びぶんときくと、なんだかむずかしそうとおもってしまうかもしれません。)
微分と聞くと、なんだか難しそうと思ってしまうかもしれません。
(しかし、すうがくにおいてはほとんどがそうなのですが、)
しかし、数学においてはほとんどがそうなのですが、
(あたらしいものも、これまでやってきたことのかくちょうであることがおおいのです。)
新しいものも、これまでやってきたことの拡張であることが多いのです。
(かんたんにいってしまえば、びぶんとは、あるかんすうのかたむきをしらべたいときにつかいます。)
簡単に言ってしまえば、微分とは、ある関数の傾きを調べたいときに使います。
(ちゅうがくすうがくまでをまなんできたかたなら、1じかんすうのかたむきはわかるでしょう。)
中学数学までを学んできた方なら、1次関数の傾きはわかるでしょう。
(びぶんはそれらをよりふくざつなかんすうにかくちょうしただけであって、)
微分はそれらをより複雑な関数に拡張しただけであって、
(なにもむずかしいがいねんではないのです。)
何も難しい概念ではないのです。
(それでは、びぶんについてくわしくみていきましょう。)
それでは、微分について詳しく見ていきましょう。
(びぶんとは、あるかんすうのかたむきをしらべたいときにつかうといいました。)
微分とは、ある関数の傾きを調べたいときに使うといいました。
(しかし、2じかんすういじょうでは、かたむきはばしょによってことなります。)
しかし、2次関数以上では、傾きは場所によって異なります。
(ですから、かたむきをあらわすかんすうである、どうかんすうというものをつくります。)
ですから、傾きを表す関数である、導関数というものを作ります。
(そして、どうかんすうをつくることこそがびぶんなのです。)
そして、導関数を作ることこそが微分なのです。
(たとえば、y=xのじじょうというぐらふをかんがえてください。)
例えば、y=xの2乗というグラフを考えてください。
(このかんすうは、xがおおきくなるほどかたむきもおおきくなります。)
この関数は、xが大きくなるほど傾きも大きくなります。
(そして、こたえをいうとこのかんすうのどうかんすうは、y=2xなのです。)
そして、答えを言うとこの関数の導関数は、y=2xなのです。
(これはどういうことかというと、)
これはどういうことかというと、
(y=xのじじょうというぐらふをかんがえたとき、)
y=xの2乗というグラフを考えた時、
(xが1ならそこでのかたむきは2、)
xが1ならそこでの傾きは2、
(xが3ならそこでのかたむきは6、)
xが3ならそこでの傾きは6、
(xがnならそこでのかたむきは2n)
xがnならそこでの傾きは2n
(ということです。)
ということです。
(どうですか?よそういじょうにかんたんだというひともおおいのではないでしょうか。)
どうですか?予想以上に簡単だという人も多いのではないでしょうか。
(さまざまなかんすうにたいして、このようなどうかんすうをつくるしゅだんをまなぶことで、)
様々な関数に対して、このような導関数を作る手段を学ぶことで、
(かんすうのおおまかなかたちがわかったり、そのあとにまなぶせきぶんなどの)
関数の大まかな形がわかったり、そのあとに学ぶ積分などの
(がくしゅうにつながったりと、びぶんはとてもべんりなものなのです。)
学習につながったりと、微分はとても便利なものなのです。
(ですので、もっとしりたいひとはyoutubeなどでしらべてみてください。)
ですので、もっと知りたい人はyoutubeなどで調べてみてください。
(それでは、よいびぶんらいふを。)
それでは、よい微分ライフを。